3rd Grade

Math

May 4-8, 2020

Please circle your teacher’s name:

Mrs. Bourque Mrs. Church Mrs. Cook
3.MD.1

Time - 11

Name: __________

Counting by 30s and 15s (forward and backward) is important when finding elapsed time. Elapsed time is the amount of time that has passed (or elapsed) from the start of an event to the end of an event. Fill in the missing times in each pattern below to practice this important skill. Once the minutes get to 60, you need to go up an hour and start the minutes over. For example, 4:50 is 4 hours and 50 minutes. If you add 10 more minutes, you are at 4 hours and 60 minutes. Because 60 minutes makes another hour, it is a full 5 hours.

1. 4:00 4:15 4:30 4:45 5:00 5:15
2. 9:30 10:00 10:30 11:00
3. 8:45 8:30 8:15 7:30 6:45

Counting by 10s and 5s forward and backward is also important when finding elapsed time. Fill in the missing times in each pattern below.

4. 3:20 3:25 3:30 3:45 3:55
5. 10:50 11:00 11:10 11:20
6. 1:20 1:10 1:00 12:10 12:00 11:50

3.MD.1

Time - 12

Name: __________

Sometimes when you are finding elapsed time, you will end up with an answer with over 60 minutes. It is standard to give the answer to an elapsed time problem in hours and minutes if the answer is over 60 minutes. However sometimes you will have to convert from hours and minutes to just minutes, so it is important to be able to go both ways. Remember each hour is 60 minutes. Look at the examples for help.

\[
\begin{align*}
2 \text{ hours } 15 \text{ minutes} &= ? \text{ minutes} \\
60 \text{ min.} + 60 \text{ min.} + 15 \text{ min.} &= 135 \text{ min.}
\end{align*}
\]

Convert each time below to just minutes.

1. 1 hour 18 minutes = __________
2. 3 hours 34 minutes = __________
3. 5 hours 47 minutes = __________

\[
\begin{align*}
165 \text{ minutes} &= ? \text{ hours and minutes} \\
- 60 \text{ min.} &= 1 \text{ hr.} \\
105 \text{ min.} &= 2 \text{ hrs. } 45 \text{ min.}
\end{align*}
\]

Convert each time below to hours and minutes.

4. 125 minutes = __________
5. 336 minutes = __________
Elapsed time is the amount of time that has passed or elapsed from the start of an event to the end of an event. One of the easiest ways to find elapsed time is to use a number line. Look at the example below and then solve each problem using the number line provided.

The example below shows how to find the elapsed time from 4:13 to 5:00 using a number line.

2 + 5 - 40 = 47 minutes

1. 5:00 p.m. to 6:30 p.m.
2. 7:10 a.m. to 7:45 a.m.
3. 2:55 a.m. to 3:20 a.m.
4. 10:05 p.m. to 10:50 p.m.

Elapsed time is the amount of time that has passed or elapsed from the start of an event to the end of an event. One of the easiest ways to find elapsed time is to use a number line. Look at the example below and then solve each problem using the number line provided.

The example below shows how to find the elapsed time from 4:13 to 5:04 using a number line.

2 + 5 - 40 + 4 = 51 minutes

1. 5:00 p.m. to 6:30 p.m.
2. 7:15 a.m. to 9:45 a.m.
3. 2:35 a.m. to 3:20 a.m.
4. 10:10 p.m. to 1:40 p.m.
Round each number below to the nearest ten and to the nearest hundred.

<table>
<thead>
<tr>
<th>Number</th>
<th>Rounded to the nearest ten</th>
<th>Rounded to the nearest hundred</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>419</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>765</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>332</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

For each problem below, round the numbers first, and then do the addition or subtraction.

1. Kelly made $167 selling cookies. Jason made $112 selling cookies. About how much money did they earn together to the nearest hundred?

2. Ms. Taylor delivered 489 packages in June. In July, she delivered 306 packages. About how many packages did she deliver total in June and July? Round your estimate to the nearest ten.

3. Mason scored 87 points with his arrows on a target. Julia scored 65 points with her arrow. About how many more points did Mason score than Julia?

4. Nikki spent $607 on baby gear for her new daughter. Chris spent $327 on baby gear for his new son. Estimate how much more money Nikki spent than Chris to the nearest ten dollars.
Solve each word problem below using any conceptual strategy you like. Also write an equation to represent the word problem.

1. Vivian earned $133 on the bracelets she made and $159 on the necklaces she made. How much money did she earn on the bracelets and necklaces?

Equation with answer: __________________________

2. Mr. Ramiro made 93 copies on Monday and 117 copies on Tuesday for his students. How many copies did he make total on Monday and Tuesday?

Equation with answer: __________________________

3. Two brothers were picking blueberries in the woods behind their house. Mathais picked 87 blueberries, and Jordan picked 162 blueberries. How many blueberries did they pick together?

Equation with answer: __________________________

4. Use the "adding by place" strategy to solve each problem below. There is an example to help you.

 264 + 389

200 + 300 = 500
60 + 80 = 140
4 + 9 = 13

500 + 100 + 40 + 10 + 3 = 653

3. 494 + 238 = ______

Equation with answer: __________________________

4. 335 + 576 = ______

Equation with answer: __________________________

2. 344 + 187 = ______

Equation with answer: __________________________
You may have noticed that anytime you multiply by ten or by a multiple of ten, you can simply add a zero to the product. This is because the answer is ten times greater than the one-digit by one-digit multiplication problem. Therefore, you can look at the base numbers (the number underlined below), find the product, and then add a zero to it to make it ten times greater. Look at the examples below, and then solve the following problems.

1. \(30 \times 4 = \) _________
2. \(5 \times 80 = \) _________
3. \(7 \times 5 = \) _________

4. \(20 \times 7 = \) _________
5. \(4 \times 80 = \) _________
6. \(6 \times 60 = \) _________

Use the knowledge you have learned about multiplying by ten or by multiples of ten to solve each of the word problems below.

1. The distance from Hank’s home to Hank’s work is 20 miles. Some of his work he can do from home, so he only has to drive to work 3 days a week. Since this is 6 trips back and forth, how many miles does Hank spend driving from his home to his work each week?

3. Raquel and her mother went grocery shopping together. Raquel spent $50. Her mother spent ten times that amount because she was hosting a party with a lot of people. How much money did Raquel’s mother spend?

2. Let’s say gasoline costs $3 a gallon. If Ted’s large truck can hold 40 gallons, how much will it cost him to fill it up if his truck is completely empty?

4. Grandpa Joe was using a 5 gallon bucket to fill up his fish aquarium with water. If it took him 30 trips, how many gallons did he put in the aquarium?
Area and Perimeter - 5

Sometimes, when finding the missing side of a figure, the perimeter is already given along with the other necessary sides. To find the missing side, you must subtract the given sides from the total perimeter.

In the example to the right, the perimeter is 22 units. This means that if you add the four given sides and the missing side, it will equal 22 units. Therefore, $5 + 5 + 4 + 4 + c = 22$. Once you add the given sides you have: $18 + c = 22$. You can either add on from 18 or subtract 18 from 22; either way you will find that $c = 4$ units. Find the missing side of each figure below using this strategy.

1. \[\text{Perimeter} = 32 \text{ units} \]
 \[d = \underline{\text{units}} \]

2. \[\text{Perimeter} = 52 \text{ units} \]
 \[f = \underline{\text{units}} \]

3. \[\text{Perimeter} = 186 \text{ units} \]
 \[n = \underline{\text{units}} \]

4. \[\text{Perimeter} = 66 \text{ units} \]
 \[s = \underline{\text{units}} \]

Area and Perimeter - 6

Find the perimeter of the figure below. You will have to find the missing sides first.

1. \[\text{Perimeter} = \underline{\text{in}} \]

Find the missing side for each figure below.

2. \[\text{Perimeter} = 44 \text{ cm} \]
 \[w = \underline{\text{cm}} \]

3. \[\text{Perimeter} = 36 \text{ in} \]
 \[a = \underline{\text{in}} \]

4. The perimeter of Julia’s backyard is 240 feet. It is in the shape of a rectangle and is 50 feet long. How wide is her backyard?

5. One side of my dog’s outside area is 8 feet. Another side is 9 feet, and another side is 12 feet. The last two sides are the same length. If the perimeter of my dog’s area is 57 feet, what is the length of each missing side?
3.MD.5

Area and Perimeter - 9

Draw how many square units will fit in each rectangle below. The size of each square unit is given for each problem.

1.
 Square Unit
 Rectangle

Area is the amount of space inside the boundary of a flat (2-dimensional) object such as a rectangle or a circle. A square unit is used to measure area. Square units can be different sizes. How does the size of a square unit affect how many units are needed to cover the area of an object? Use words and pictures to explain your thinking.

2.
 Square Unit
 Rectangle

3.
 Square Unit
 Rectangle

3.MD.5

Area and Perimeter - 10

Draw in the square units for each figure below. The number of square units are given for each side. Then, give the area of the figure. An example has been given to the right for you.

1.
 Area =

2.
 Area =

3.
 Area =

4.
 Area =

5.
 Area =

Area =

Area =

Area =
Fractions - 5

1. Show four different ways to divide a rectangle in fourths.

2. Show four different ways to divide a rectangle in eighths.

Write the fraction for the shaded section in each figure below. Each figure represents a whole.

3.

4.

5.

Write the fraction for the unshaded section in each figure below. Each figure represents a whole.

6.

7.

8.

9. Mike and Lucy bought one cheese pizza. Out of the eight pieces, Lucy ate five of them. If Mike ate the rest, what fraction of the pizza did Mike eat?

10. Greg made some brownies for his family. He cut the brownies into 10 equal pieces. Greg had one brownie. His wife had one brownie, and his kids had four brownies. What fraction of the brownies are left over?

Fractions - 6

A unit fraction is one part of a whole once the whole has been divided into equal sections. When you add unit fractions together, you can make other fractions. For example, \(\frac{1}{4} + \frac{1}{4} + \frac{1}{4} = \frac{3}{4}\).

Write an addition sentence for each fraction below using unit fractions. For example, \(\frac{3}{4}\) would be \(\frac{1}{4} + \frac{1}{4} + \frac{1}{4}\).

1. \(\frac{4}{6}\)
2. \(\frac{3}{8}\)
3. \(\frac{2}{4}\)
4. \(\frac{2}{2}\)
5. \(\frac{7}{8}\)
6. \(\frac{3}{8}\)

Therefore, fractions can also be looked at as unit fractions. For example, \(\frac{7}{8}\) can be thought of as 7 one-eighth pieces or seven-eighths. Seven-eighths would be the word form.

Write the word form for each fraction below.

7. \(\frac{1}{6}\)
8. \(\frac{2}{4}\)
9. \(\frac{3}{3}\)
1. How many sixths are in \(\frac{4}{6} \)?
2. How many thirds are in \(\frac{2}{3} \)?
3. How many eighths are in \(\frac{5}{8} \)?

You can also add fractions that are not unit fractions together to make a new fraction. For example, \(\frac{3}{4} \) could be made with a \(\frac{1}{4} \) and a \(\frac{1}{4} \). As long as you end up with 3 one-fourth pieces, you have \(\frac{3}{4} \).

\[
\begin{array}{ccc}
\frac{2}{4} & \div & \frac{1}{4} \\
\text{two-fourths} & \text{one-fourth} & \text{three-fourths}
\end{array}
\]

4. Which number sentence(s) would equal \(\frac{5}{6} \)? There may be more than one correct answer.
 a. \(\frac{1}{3} + \frac{4}{3} \)
 b. \(\frac{2}{8} + \frac{3}{8} \)
 c. \(\frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} + \frac{1}{6} \)
 d. \(\frac{4}{4} + \frac{1}{2} \)

5. Which number sentence(s) would equal \(\frac{3}{8} \)? There may be more than one correct answer.
 a. \(\frac{1}{8} + \frac{1}{8} + \frac{1}{8} \)
 b. \(\frac{0}{8} + \frac{3}{8} \)
 c. \(\frac{1}{4} + \frac{1}{3} + \frac{1}{1} \)
 d. \(\frac{2}{8} + \frac{1}{8} \)

6. Which number sentence represents one whole? There may be more than one correct answer.
 a. \(\frac{2}{8} + \frac{2}{8} + \frac{2}{8} + \frac{1}{8} \)
 b. \(\frac{1}{4} + \frac{1}{4} + \frac{2}{5} \)
 c. \(\frac{1}{2} + \frac{1}{2} \)
 d. \(\frac{1}{6} + \frac{2}{6} + \frac{3}{6} \)

3.F.1

Color in each figure to accurately represent the fraction beside it. Make the numerator the colored part.

1. \(\frac{4}{5} \)

2. \(\frac{2}{6} \)

3. \(\frac{6}{8} \)

4. \(\frac{4}{4} \)

3.F.2

Draw a picture to represent each fraction below. Have the numerator represent the shaded amount in your picture.

\[
\begin{array}{ccc}
\frac{5}{6} & & \frac{2}{3} \\
\frac{4}{4} & & \frac{6}{8}
\end{array}
\]
1. What is one attribute a polygon must have?
 a. at least 1 curved side
 b. closed
 c. open
 d. 3-dimensional

2. Circle all of the polygons below.

 ![Polygons diagram]

<table>
<thead>
<tr>
<th>3. How do the line segments relate to one another? Circle any correct answers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. They are parallel.</td>
</tr>
<tr>
<td>b. They are perpendicular.</td>
</tr>
<tr>
<td>c. They are congruent.</td>
</tr>
<tr>
<td>d. They are not related at all.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. How do the line segments relate to one another? Circle any correct answers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. They are parallel.</td>
</tr>
<tr>
<td>b. They are perpendicular.</td>
</tr>
<tr>
<td>c. They are congruent.</td>
</tr>
<tr>
<td>d. They are not related at all.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. How do the line segments relate to one another? Circle any correct answers.</th>
</tr>
</thead>
<tbody>
<tr>
<td>a. They are parallel.</td>
</tr>
<tr>
<td>b. They are perpendicular.</td>
</tr>
<tr>
<td>c. They are congruent.</td>
</tr>
<tr>
<td>d. They are not related at all.</td>
</tr>
</tbody>
</table>

Geometry - 4

An angle is the amount of turn between two, straight rays that have a common endpoint (vertex). There are three types of angles in geometry: **right, acute, and obtuse**. A right angle is exactly 90 degrees. It makes a perfect square corner. An acute angle is less than 90 degrees, and an obtuse angle is greater than 90 degrees. You can use the corner of a piece of paper to help find the correct type of angle. If it matches up perfectly, it is 90 degrees. If it is less than the corner, it is acute. If it is greater than the corner, it is obtuse.

![Angle diagram]

Write whether each angle below is a right, acute, or obtuse angle. Use a piece of paper to help you if needed.

<table>
<thead>
<tr>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>5.</th>
<th>6.</th>
<th>7.</th>
<th>8.</th>
</tr>
</thead>
</table>
3.MD.4 Pictographs, Bar Graphs, and Line Plots - 11 Name: ____________

A line plot is another way to represent data. An “x” is used for each piece of data. Usually each “x” counts as one unless otherwise noted. The data is then put on a line which is why it is called a “line plot”. Use the line plot below to answer the following questions.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Number of seconds people could stay on a bull machine

1. How many people participated? __________
2. How many people stayed on for 4 seconds? __________
3. How many people stayed on less than 5 seconds? __________
4. How many people stayed on for 3 or more seconds? __________
5. How many people stayed on between 4 and 8 seconds? __________
6. How many more people stayed on for 4 seconds than 1 second? __________
7. How long did most people stay on the bull machine?

3.MD.4 Pictographs, Bar Graphs, and Line Plots - 12 Name: ____________

A line plot does not have to just represent whole numbers. It can also show fractions of whole numbers. Before looking at a line plot split into fractions, we must be able to measure objects to the nearest fourth of an inch, so that we can produce our own line plot if needed. Look at the pencil below in each picture.

![Pencil diagrams](image)

When measuring to the nearest inch, this pencil measures 2 inches because it is closer to 2 inches than to 1 inch.

When measuring to the nearest half inch, this pencil measures 1½ inches because it is closer to 1½ inches than to 2 inches.

When measuring to the nearest fourth inch, this pencil measures 1⅛ inches because it is closer to 1⅛ inches than to 1⅛ inches.

Measure each pencil below to the nearest whole inch. This means you find the whole number that the pencil is closest to on the ruler.

1. _____ inch(es)
2. _____ inch(es)
3. _____ inch(es)
3.OA.3,4

Operations and Algebraic Thinking - 9

Name: __________

Finish drawing each array based on the number sentence and fill in the missing factor.

1.

\[4 \times _ _ _ = 20 \]

2.

\[8 \times _ _ _ = 32 \]

Draw a picture to represent each problem below and then solve it.

3. Mikey planted a garden in his backyard. He had 6 rows of tomato plants. Each row had 4 tomato plants in it. How many tomato plants did Mikey have in all?

4. The Christmas container I keep ornaments in has 36 slots in it. Each row has 9 slots in it. How many rows are in the container?

3.OA.5,7

Operations and Algebraic Thinking - 10

Name: __________

Each array below has been decomposed into separate parts. Find the equation that matches how the array was decomposed. An example has been done to the right to help you.

1.

\[
\begin{align*}
\text{a. } & \{4 \times 6\} - \{2 \times 6\} \\
\text{b. } & \{4 \times 6\} + \{2 \times 6\} \\
\text{c. } & \{2 \times 6\} + \{2 \times 6\} \\
\text{d. } & \{3 \times 6\} + \{2 \times 6\} \\
\end{align*}
\]

2.

\[
\begin{align*}
\text{a. } & \{5 \times 8\} + (2 \times 8) + (1 \times 8) \\
\text{b. } & 8 \times 8 \\
\text{c. } & \{1 \times 8\} + (2 \times 8) + (6 \times 8) \\
\text{d. } & \{7 \times 8\} + (1 \times 8) \\
\end{align*}
\]

3.

\[
\begin{align*}
\text{a. } & \{5 \times 3\} + \{4 \times 3\} \\
\text{b. } & \{2 \times 7\} + 7 \\
\text{c. } & \{5 \times 3\} + \{2 \times 3\} + \{2 \times 3\} \\
\text{d. } & \{9 \times 2\} + 9 \\
\end{align*}
\]
Supply and Demand

By Lil Pluto

At nine o'clock sharp, when Stan opened his store,
Hundreds of shoppers rushed straight through the doors.
All of them wanted, demanded to buy
A Boomtastic, Zoomtastic, Fantastic Fly.

These robotic toys were the hottest new craze.
Some people had waited in line for five days.
They dashed down the aisles shouting, "Mine! They're all mine!"
And snatched up the gadgets for nine-ninety nine.

In fifty-three seconds, the toys were all sold.
"Try buying online," the sad shoppers were told.
With such high demand and a shrinking supply,
The price of the Boomtastic Flies soared sky high.

In a matter of weeks, a new trend appeared –
The Wobbly Wombat, so wacky and weird.
Meanwhile at Stan's, he got Flies back in stock,
But buyers said, "No! It's the Wombats that rock!"

The wants of consumers can change. They are fickle.
Now Stan sells the Flies for two dimes and a nickel.
Supply and Demand
By Lil Pluta

1. What is the best-selling item at Stan's store?

2. What happens to the price of Stan's Flies when the demand is more than the supply?

3. What happens to the demand for Stan's Flies when the Wobbly Wombat becomes the new craze?

4. Compare the price of Stan's Flies at the beginning of the poem versus at the end of the poem.

5. What accounts for the change in price you described in Question 4?
Supply and Demand

Supply is the amount of goods available at a given time. If there is a lot of something available for sale, the supply is high. If there isn't enough of something available for sale, there is a scarcity.

Demand is how many people want the goods that are available. If many people want the goods available, there is high demand. If there aren't many people who want the goods available, there is a low demand.

Jim and Kate own a farm. They have twenty hens that produce eggs. Jim and Kate sell the eggs to supermarkets across the state.

1. In April, many people wanted to buy eggs for Easter. Was the demand for eggs higher or lower than normal?

2. In June, six of Jim and Kate's hens were sick and could not lay eggs. Was the supply of eggs higher or lower than normal?

3. In August, Jim and Kate bought ten more hens. Did this cause the supply of eggs to go up or down?

4. October was national pancake month. Because of this, many people stopped buying eggs. Did this cause the demand to go up or down?

5. Do you think Jim and Kate like the demand for eggs to be high or low? Explain.

6. If most of the hens stop laying and eggs become scarce, what will probably happen to the price of eggs? Explain.
Vertebrates and Invertebrates

By Lili Pluta

Vertebrates have backbones or spines, in other words. Some of them are mammals, and some are fish or birds. Amphibians and reptiles complete the beastly list. All have endoskeletons. Their bones help them exist.

Invertebrates outnumber the creatures that have bones. Their ranks include crustaceans and snails with shells for homes. Arachnids, worms, and insects. Echinoderms and squid. Some have exoskeletons. The soft ones wish they did.
1. Based on what you learned from the poem, what do vertebrates have that invertebrates do not have?

2. Sort all of the organisms in the box below into the “Vertebrates” or “Invertebrates” table, using the information from the poem to guide you.

<table>
<thead>
<tr>
<th>Vertebrates</th>
<th>Invertebrates</th>
</tr>
</thead>
<tbody>
<tr>
<td>squid</td>
<td>worm</td>
</tr>
<tr>
<td>camel</td>
<td>starfish</td>
</tr>
<tr>
<td>ant</td>
<td>parrot</td>
</tr>
<tr>
<td>butterfly</td>
<td>jaguar</td>
</tr>
<tr>
<td>toad</td>
<td></td>
</tr>
<tr>
<td>crocodile</td>
<td></td>
</tr>
</tbody>
</table>

3. Do all invertebrates have exoskeletons? If yes, why? If no, give an example of an invertebrate that doesn’t have an exoskeleton.
Vertebrates and Invertebrates
By Lil Pluto

Choose any animal. First tell whether it is a vertebrate or invertebrate. Then, with a parent or teacher’s permission, use the Internet to find three interesting facts about the animals you chose. List your source for each fact.

The animal I chose is ____________________________

Is this animal a vertebrate or an invertebrate? ____________________________

Interesting Fact #1: ___

source: ___

Interesting Fact #2: ___

source: ___

Interesting Fact #3: ___

source: ___
Invertebrates Word Search

Some of the animals below are invertebrates; some are vertebrates. Circle the animals that are invertebrates. Cross out the animals that are vertebrates.

<table>
<thead>
<tr>
<th>ANT</th>
<th>GRASSHOPPER</th>
<th>OTTER</th>
<th>SNAKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>BAT</td>
<td>HUMAN</td>
<td>PLATYPUS</td>
<td>SPIDER</td>
</tr>
<tr>
<td>BUTTERFLY</td>
<td>HUMMINGBIRD</td>
<td>SEA HORSE</td>
<td>SPONGE</td>
</tr>
<tr>
<td>CENTIPEDE</td>
<td>JELLYFISH</td>
<td>SEAL</td>
<td>SQUID</td>
</tr>
<tr>
<td>DRAGONFLY</td>
<td>LIZARD</td>
<td>SHARK</td>
<td>STARFISH</td>
</tr>
<tr>
<td>EARTHWORM</td>
<td>LOBSTER</td>
<td>SHRIMP</td>
<td>TURTLE</td>
</tr>
<tr>
<td>FROG</td>
<td>MOUSE</td>
<td>SNAIL</td>
<td>WHALE</td>
</tr>
</tbody>
</table>

Now find only the invertebrates in the puzzle. Animals that are not invertebrates will not be hidden in the puzzle. Words are hidden → , ↓ , and ↖.